RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2016-19] B.A./B.Sc. FOURTH SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018

Date	: 14/03/2018	MATHEMATICS (Honours)	
Time	: 2 pm – 4 pm	Paper : IV	Full Marks : 50

[Use a separate Answer Book for each group]

Group – A

Answer any three questions from <u>Question Nos. 1 to 5</u> :

Let $X = P(\mathbb{N})$, the power set of \mathbb{N} . Define $d: X \times X \to \mathbb{R}$ by 1.

 $d(A,B) = \begin{cases} 0, A \Delta B = \phi \\ \frac{1}{m}, \text{ m is the least element of } A \Delta B \end{cases}$

Prove that (X,d) is a metric space.

- Define a G_{δ} -set in a metric space. Is the set $A = (0,1] \cup \{2\}$ is G_{δ} in \mathbb{R} ? Is A an F_{σ} -set? Justify your 2. answer.
- Define a metric 'd' on \mathbb{N} such that no point of (\mathbb{N}, d) is isolated. Justify your answer. 3.
- Let A, B $\subseteq \mathbb{R}$ where A is compact, B is closed and A \cap B = ϕ . Prove that d(A, B) > 0. 4.
- Show that l_{∞} is not separable. 5.

Answer any two questions from Question Nos. 6 to 8 :

6. Let $f_n(x) = \frac{1}{nx+1}$, $x \in (0,1)$, $n \in \mathbb{N}$

 $g_n(x) = \frac{x}{nx+1}$, $x \in (0,1)$, check the pointwise and uniform convergence of f_n and g_n 's in (0,1)

- Let I be a bounded interval in \mathbb{R} and let $\{f_n\}$, $\{g_n\}$ be two sequences of real valued functions, 7. uniformly convergent on I. Let $h_n(x) = f_n(x)g_n(x)$, $x \in I$. Prove that, if for each $n \in \mathbb{N}$, f_n, g_n are bounded in I, then h_n is uniformly convergent on I.
- State and prove Dini's theorem for a sequence of real valued functions. 8.

<u>Group – B</u> [25 marks]

Answer any three questions from Question Nos. 9 to 13:

9. Solve $x \frac{d^2y}{dx^2} - (x+2)\frac{dy}{dx} + 2y = x^3e^x$ after the determination of a solution of its reduced equation.

10. Solve $(x+2)\frac{d^2y}{dx^2} - (2x+5)\frac{dy}{dx} + 2y = (x+1)e^x$ by the method of operational factors.

[2×5]

[3×5]

[25 marks]

[3×5]

11. Find the eigen values and eigen functions of $\frac{d^2y}{dx^2} + \lambda y = 0$ ($\lambda \neq 0$) with y(0) = 0 and $y'(\ell) = 0$.

12. Solve
$$\frac{dx}{y^3x - 2x^4} = \frac{dy}{2y^4 - x^3y} = \frac{dz}{9z(x^3 - y^3)}$$
.

13. Solve yz(y+z)dx + zx(x+z)dy + xy(x+y)dz = 0.

Answer any two questions from Question Nos. 14 to 16 :

- 14. Tangents are drawn from the origin to the curve $y = \sin x$. Show that their points of contact lie on the curve $x^2y^2 = x^2 y^2$.
- 15. If the polar equation of a curve is $r = f(\theta)$, where $f(\theta)$ is an even function of θ , show that the curvature at the point $\theta = 0$ is $\frac{f(0) f''(0)}{\{f(0)\}^2}$.
- 16. Show that the points common to the curve $2y^3 2x^2y 4xy^2 + 4x^3 14xy + 6y^2 + 4x^2 + 6y + 1 = 0$ and its asymptotes lie on the straight line 8x + 2y + 1 = 0.

_____× _____

[2×5]